

Informations- und Datenverarbeitunc

Improvement of **Process and Equipment Performance** using Online and Real Time **Optical Emission Spectroscopy**

> D. Knobloch* F.H. Bell** A Steinbach* J. Zimpel***

Siemens Microelectronics Center GmbH & Co.OHG * Siemens AG, Munich ** Fraunhofer IITB, Dresden ***

Introduction

Experimental

Models for process control (example: contact hole etch)

- Characterisation of process parameters
- Prediction of process results
- Monitoring of product wafers
- Dynamical feature extraction

Data analyses based on

- Principal component analysis (PCA)
- Range selection analysis (RSA)

Summary

Use of external sensors is in the frame of Advanced Equipment Control and Advanced Process Control, e.g.:

Informations- und Datenverarbeitung

- etstablish more reliable processes
- fault detection
- increase wafer troughput and wafer yield

Lack of diagnostic sensors on tools for plasma processing

Our philosophy:

Evaluation of additional sensors in production lines for in situ and real time process and equipment control.

Example:

Optical Emission Spectroscopy (OES)

Online data acquisation

Models for process control

Data reduction methods based on variation of process input parameters

Baltimore, November 1998

Results of Modeling

Monitoring of product wafers during wet clean cycles using PCA

Chamber condition and influence of the quartz window

Monitoring of product wafers during wet clean cycles using PCA

Conclusion of PCA-Results

Separation between:

- Chamber condition as a function of rf-hours and influence of quartz window
- "First" wafer effect

Modeling of endpoint trace Example: analysis of endpoint signal behaviour

Interpretation of model parameters

Gaussian part of model equation (T_2)

Variation in endpoint times for different lots (±12%) (BPSG deposition and CMP)

Variation in endpoint times during processing of one lot (±2%) (Nitrid-CVD chamber cleaning)

Characterisation of previous process steps

OES successfully established as a process and equipment monitoring tool in a production line:

Informations- und Datenverarbeitung

- control of input parameters (gas flows, power, etc.)
- control of output parameters (etch rate, uniformity, etc.)
- characterisation of chamber drift and "first" wafer effect
- characterisation of previous process steps

Data treatment using:

- PCA
- Range Selection Analysis
- modeling of endpoint trace

Outview:

- chamber matching
- correlation between models and physical understanding