

Jan Zimpel Knut Voigtländer Fraunhofer Institut **IVI Dresden** Andreas Steinbach Infineon Dresden **Dirk Knobloch** Infineon München 24.05.2000

Using Multi Way PCA (MPCA) for Advanced Monitoring and Diagnosis for Plasma Processing based on Optical Emission Spectroscopy

> Jan Zimpel Knut Voigtländer Fraunhofer IVI Dresden Andreas Steinbach Infineon Technologies Dresden Dirk Knobloch Infineon Technologies München

4.05.2000 Page 1

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Acknowledgement

Jan Zimpel Knut Voigtländer Fraunhofer Institut **IVI Dresden** Andreas Steinbach Infineon Dresden **Dirk Knobloch** Infineon München 24.05.2000

The authors of this presentation would like to thank

Siegfried Bernhard Lars Christoph Barbara Schmidt Infineon Technologies Dresden

4.05.2000 Page 2

Introduction - APC in high volume production

- Hardware integration and software structure
- Data reduction by PCA
- Experiments
 - Contact etch at AMAT MxP+
 - Poly etch at AMAT DPS
- Summary and outlook

24.05.2000 Page 3

Jan Zimpel

IVI Dresden

Dirk Knobloch Infineon München

Knut Voigtländer Fraunhofer Institut

Andreas Steinbach Infineon Dresden

APC - offline analysis and real time process control including alarms

24.05.2000 Page 4

Jan Zimpel

IVI Dresden

Dirk Knobloch Infineon München

Knut Voigtländer

Fraunhofer Institut

Andreas Steinbach Infineon Dresden

> SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

APC in high volume production

Data reduction – an essential need for APC in high volume production

- APC in high volume production creates large amounts of data
 - Data reduction is an essential need for off line analysis and real time process monitoring
- Methods for data reduction:
 - Measurement techniques based on physical models
 - Calculation of statistical key numbers
 - Use of complex process parameters
 - Model based data analysis

24.05.2000 Page 5

Jan Zimpel

IVI Dresden

Dirk Knobloch Infineon München

Knut Voigtländer Fraunhofer Institut

Andreas Steinbach Infineon Dresden

Features of Hamamatsu MPM spectrometer

- Spectral range: 200 950 nm
- Resolution: < 2 nm</p>
- CCD line channels: 1024
- Connection to Host PC via TCP-IP, RS 232
- Internal data processing for endpoint detection; up to 100 endpoint scrip's are available
- Digital / analog port's for connection to tool

4.05.2000 Page 6

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Hardware integration and software structure

Integration of Hamamatsu MPM spectrometer

ntineon

- Tool interface for stand alone endpoint detection
 - Interface for logistic data e.g., lot and wafer number, recipe, step number

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Hardware integration and software structure

Software solution developed by Fraunhofer Institut IVI Dresden

- Database oriented spectra storage and SQL- based data access for:
 - Data visualization
 - Data analysis
 - Endpoint synthesis
 - Validation of endpoint detection algorithms

24.05.2000 Page 8

Jan Zimpel Knut Voigtländer

IVI Dresden

Fraunhofer Institut

Andreas Steinbach

Infineon Dresden

Dirk Knobloch Infineon München

> SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Hardware integration and software structure

Data reduction by key number calculation with PCA

- Simple key number extraction: mean, standard deviation, max, min, ...
- Extraction of key numbers using signal decomposition:
 - Tschebyscheff functions
 - Adjusted signal base (PCA)
 - Multivariate key number extraction -- Multi Way PCA
- Adaptation of a nonlinear parametric signal model
 - Compromise between efficiency and effort / a-priori knowledge

24.05.2000 Page 9

Jan Zimpel Knut Voigtländer Fraunhofer Institut

IVI Dresden

Dirk Knobloch Infineon München

Andreas Steinbach Infineon Dresden

Data reduction by PCA

Principle of PCA – Data cube

Jan Zimpel Knut Voigtländer Fraunhofer Institut **IVI Dresden** Andreas Steinbach Infineon Dresden **Dirk Knobloch** Infineon München

> 24.05.2000 Page 10

Data cube containing spectra

Vertical and horizontal cut through Data cube

- Optical spectra visualized as a "Data cube"
- Optical emission spectroscopy creates very large amounts of data !

Data reduction by PCA

 Split of the original data matrix into orthogonal pattern u_i and orthogonal scores m_i:

$$X = M \cdot U^{T} = m_{i} \cdot \underline{u}_{i}^{T}$$

Scores represent the weight of the corresponding pattern in the original data sample

Data reduction by PCA

Jan Zimpel Knut Voigtländer Fraunhofer Institut IVI Dresden Andreas Steinbach Infineon Dresden Dirk Knobloch Infineon München

> 24.05.2000 Page 11

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

- Contact etch at Applied Materials MxP+ chamber
- Standard oxide etch chemistry, CF₄, CHF₃, Ar
- Observation of 5 wet clean cycles (WC), about 4000 wafers
- Simple process mix, two different recipes for two high volume DRAM products mainly

Step	Product 1	Product 2
Descum		N_2 / O_2 descum
Main etch 1	BPSG etch	BPSG etch
Main etch 2		Nitride etch

Jan Zimpel Knut Voigtländer Fraunhofer Institut IVI Dresden

Andreas Steinbach Infineon Dresden

Dirk Knobloch Infineon München

PCA results obtained on DRAM contact etch at Applied Materials MXP+ chamber

Matrix X: mean spectra of 4000 wafers of 5 wet clean cycles (WC)

Patterns and scores 1st to 3rd order of WC 2 .. 5

wavelength [nm]

Infineon Dresden Dirk Knobloch Infineon München

Jan Zimpel

IVI Dresden

Knut Voigtländer

Fraunhofer Institut

Andreas Steinbach

24.05.2000 Page 13

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Contact etch in AMAT MxP+

wafer

PCA results obtained on contact etch at Applied Materials MXP+ chamber, cont.

- CF₄, CHF₃, Ar chemistry, two main DRAM products
- Scores of 2st order of the first observed at wet clean cycle 1

- Product 1: high polymerizing Product 2: low polymerizing
- Scores of 2st order decrease during WC1, caused by:
 - Increasing light absorption at polymer layer on the recess side window
 - And real process drift caused by polymer on chamber wall
- Product dependent monitoring of chamber condition

24.05.2000 Page 14

Jan Zimpel

IVI Dresden

Knut Voigtländer

Fraunhofer Institut

Andreas Steinbach

Infineon Dresden

Infineon München

Dirk Knobloch

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Multi-Way Principle Component Analysis

Jan Zimpel Knut Voigtländer Fraunhofer Institut IVI Dresden Andreas Steinbach Infineon Dresden Dirk Knobloch Infineon München

lineon

24.05.2000 Page 15

• "One way PCA": use of <u>one mean spectrum</u> per wafer

 Multi Way PCA: Calculation of orthogonal wave pattern u_i and orthogonal base time signals v_i by unfolding the original data cube in <u>time and wave</u> direction

Data reduction by Multi Way PCA

Some examples of key numbers obtained by Multi Way PCA on contact etch at AMAT MxP+

extracted 0.2 0.2 V_1 V_2 0.122 0.1 0 basic time signals v_i 0.121 0 V_3 -0.2 -0.1 0.12 100 150 50 100 150 50 1 5 0 resulting key numbers vs. wafer x 10⁶ 0.1 2000 U, scores of key number u_iv_i [counts] 1000 2 extracted basic wave pattern u_i п -2000 -4000 -1D00 -0.1 -6000 400 500 600 700 x 10⁴⁰⁰⁰ 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000 0.2 0.1 U₃ 0 -5000 -10000 -0.1 -20000 -10000 600 300 400 500 700 x 10⁴⁹⁰⁰ 2000 3000 4000 1000 2000 3000 4000 2000 3000 4000 1000 0.15 U₄ 0.1 4000 2000 0.05 2000 0 -0.05 Ο -2000 400 500 600 700 300 -2000 x 10⁹000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000 0.1 α 8000 6000 4000 0 -5000 2000 -0.1 10000 300 400 500 600 700 -2D0Ō wavelength [nm] 1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000 wafer

Jan Zimpel Knut Voigtländer Fraunhofer Institut **IVI Dresden** Andreas Steinbach Infineon Dresden **Dirk Knobloch**

> 24.05.2000 Page 16

Infineon München

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Interpretation of key numbers u_i;v_j

- Significant signatures up to 10th...20th order of u_i and v_j, max. about 100...400 key numbers
- Significant key numbers limited by:
 - increasing order decreasing information content
 - redundant signatures

- PCA = mathematical algorithm, no physical or technological input
- Advantage: universal, application to any kind of data possible
- Disadvantage: no clear physical meaning of these key numbers
- Difficult interpretation

Jan Zimpel Knut Voigtländer Fraunhofer Institut IVI Dresden Andreas Steinbach Infineon Dresden Dirk Knobloch Infineon München

> 24.05.2000 Page 17

- Physical, chemical, technological knowledge
- Comparison to other measurement techniques,
 - delivering physical parameters

Interpretation of optical key numbers with experience

key number u_2 ; v_1 vs. wafer

- Key number u₂;v₁ shows reproducible long term drift between wet cleans.
- Experience possible reasons:
 - Light adsorption by polymer, growing on recess side window
 - Drift of gas composition, caused by polymer on the chamber walls
- No influence of power dissipation here

Jan Zimpel Knut Voigtländer Fraunhofer Institut IVI Dresden Andreas Steinbach Infineon Dresden Dirk Knobloch Infineon München

24.05.2000 Page 18

Reference: Plasma parameter measurement with SEERS

- SEERS = <u>Self Excited Electron Plasma</u>
 <u>Resonance Spectroscopy</u>
 - = "electrical" plasma measurement technique
- Measurement of:
 - rf current
 - rf voltage
- Real time calculation of plasma parameters:
 - Electron collision rate [collisions per sec]
 - Electron density [electrons per cm³]
 - Bulk power [mW per cm²]
 - DC bias voltage [V]
- Plasma monitoring system HERCULES, based on SEERS was used as reference system

24.05.2000 Page 19

Jan Zimpel

IVI Dresden

Knut Voigtländer

Fraunhofer Institut

Andreas Steinbach

Infineon Dresden

Dirk Knobloch Infineon München

Jan Zimpel Knut Voigtländer

IVI Dresden

Fraunhofer Institut

Andreas Steinbach

Infineon Dresden

Infineon München

24.05.2000

Page 20

Dirk Knobloch

Interpretation of optical key numbers with comparison to plasma parameters

- Possible reasons:
 - Temperature drift
 - Gas adsorption and desorption

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

- Short term drift indicated by:
 - Optical key numbers,
 e.g., u₄;v₁, u₅;v₁
 - Electron collision rate

Interpretation of optical key numbers with comparison to plasma parameters, cont.

- Product indicated by:
 - Optical key number u₄;v₂ (no optical measurements available during the tool failure)
 - **Electron density**

24.05.2000 Page 21

Jan Zimpel

IVI Dresden

Dirk Knobloch Infineon München

Knut Voigtländer

Fraunhofer Institut

Andreas Steinbach Infineon Dresden

24.05.2000

Page 22

Interpretation of optical key numbers with comparison to endpoint signatures

optical endpoint signal vs. etch time key number u_5 ; v_6 vs. wafer •x 10 •1.05 400 units •1.04 200 •1.03 Tarb. key number [counts] •1.02 -200 •1.01 optical intensity -400 •0.99 -600 •0.98 -800 •0.97 one point – one curve --1000 one wafer •0.96 one wafer 20 60 80 100 120 40 •10 •20 •30 •40 •60 etch time wafer

- Key number u₅;v₆ corresponds with endpoint time
- Superimposition of previous processes, depending on lot

Topical Example: Chamber comparison at poly recess etch in Applied Materials DPS

Jan Zimpel Knut Voigtländer Fraunhofer Institut IVI Dresden Andreas Steinbach Infineon Dresden Dirk Knobloch Infineon München 24.05.2000 key number [counts]

- Measurement at chamber B several weeks later.
 - Key numbers indicate other conditions at chamber B (see 3).
- Reasons not yet identified.

4.05.2000 Page 23

SEMATECH AEC/APC Symposium XII Sept 24-28, 2000, Lake Tahoe, Nevada

Poly recess etch in AMAT DPS

Summary and outlook

- PCA / MPCA is a universal mathematical method for data analysis and data reduction.
- Key numbers obtained by application of PCA / MPCA on optical spectra are complex process parameters, indicating tool and wafer impacts.
- Interpretation of key numbers is possible by use of:
 - extracted spectral wave pattern and basic time signals
 - physical, chemical, technological knowledge
 - comparison to other process parameters and tool parameters
- Actual evaluation / application status:
 - Endpoint detection demonstrated at contact etch processes
 - Application for optimization of endpoint signals and clean processes
- Use for real time process control in high volume production is a great challenge, due to large number of key numbers and complex interpretation.

24.05.2000 Page 24

Jan Zimpel

IVI Dresden

Knut Voigtländer Fraunhofer Institut

Andreas Steinbach

Infineon Dresden

Dirk Knobloch Infineon München

Summary